Performance of Polymer Composites Lubricated with Glycerol and Water as Green Lubricants

Author:

Trajkovski Ana1,Novak Nejc1ORCID,Pustavrh Jan1,Kalin Mitjan1ORCID,Majdič Franc1

Affiliation:

1. Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva cesta 6, 1000 Ljubljana, Slovenia

Abstract

The study analysed the tribological performance of five different polymer composites: polyetheretherketone reinforced with 30% carbon fibres—PEEK CF30, polyetheretherketone reinforced with 10% carbon fibres, 10% graphite and 10% polytetrafluoroethylene—PEEK MOD, polytetrafluoroethylene reinforced with 25% carbon fibres—PTFE CF25, polyoxymethylene with 30% carbon fibres—POM CF30 and ultra-high molecular weight polyethylene—UHMW PE. The polymers were tested under the sliding regime of a reciprocating stainless-steel ball on a polymer disc, with test parameters expected for hydraulic valves. Two environmentally safe lubricants were used: glycerol and water. The selected polymer materials and their tribological properties were compared based on the coefficient of friction and the specific wear rate. The worn surfaces were examined using scanning electron microscopy, and the transfer film was analysed using the energy dispersive spectroscopy technique. When tested in glycerol, a comparable and low coefficient of friction was measured for all polymers (~0.02). At the same time, a significantly lower coefficient was measured for all polymers in glycerol compared to water-lubricated conditions (~0.06–0.22). The polymers differed in the measured specific wear rate, which increases significantly in water for all polymers. A lower specific wear rate was measured for three polymers with higher microhardness: PEEK CF30, PEEK MOD and POM CF30. In water, PEEK CF30 showed superior tribological properties under harsh conditions but was well followed by POM CF30, which showed the most intense transfer film.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3