Dynamic Modeling of Flue Gas Desulfurization Process via Bivariate EMD-Based Temporal Convolutional Network

Author:

Liu Quanbo1ORCID,Li Xiaoli1ORCID,Wang Kang1ORCID

Affiliation:

1. Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China

Abstract

Sulfur dioxide (SO2) can cause detrimental impacts on the ecosystem. It is well known that coal-fired power plants play a dominant role in SO2 emissions, and consequently industrial flue gas desulfurization (IFGD) systems are widely used in coal-fired power plants. To remove SO2 effectively such that ultra-low emission standard can be satisfied, IFGD modeling has become urgently necessary. IFGD is a chemical process with long-term dependencies between time steps, and it typically exhibits strong non-linear behavior. Furthermore, the process is rendered non-stationary due to frequent changes in boiler loads. The above-mentioned properties make IFGD process modeling a truly formidable problem, since the chosen model should have the capability of learning long-term dependencies, non-linear dynamics and non-stationary processes simultaneously. Previous research in this area fails to take all the above points into account at a time, and this calls for a novel modeling approach so that satisfactory modeling performance can be achieved. In this work, a novel bivariate empirical mode decomposition (BEMD)-based temporal convolutional network (TCN) approach is proposed. In our approach, BEMD is employed to generate relatively stationary processes, while TCN, which possesses long-term memory ability and uses dilated causal convolutions, serves to model each subprocess. Our method was validated using the operating data from the desulfurization system of a coal-fired power station in China. Simulation results show that our approach yields desirable performance, which demonstrates its effectiveness in the IFGD dynamic modeling problem.

Funder

National Natural Science Foundation of China

Beijing Natural Science Foundation

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3