Non-Destructive Testing in Concrete Maturity Modeling and Master Curve Development

Author:

Saremi Setare1,Goulias Dimitrios2

Affiliation:

1. Fugro Inc., Houston, TX 77081, USA

2. Department of Civil and Environmental Engineering, Faculty of Engineering, University of Maryland, College Park, MD 20742, USA

Abstract

Assessing concrete quality as construction goes on provides early warnings of potential flaws and leads to timely corrections in mix proportioning and placement techniques. Compressive strength and maturity modeling are among the most common parameters used by the concrete industry. Past studies indicated that non-destructive methods, NDTs, relate well to maturity and concrete strength predictions. In this study, the hydration temperature–time history of concrete was explored in defining “master curves” for concrete maturity for the first time. Well-accepted NDTs, such as ultrasonic pulse velocity and resonant frequency, were used in this effort. The study findings indicated that the novel approach of “master curves” for the maturity of concrete can be defined and follow a generalized logarithmic form. The best fit models relating NDT response and the maturity temperature–time product provided a high coefficient of determination (i.e., in almost all cases above 0.9 and p < 0.05), thus resulting in a very good fit. The shift factors for each mixture’s maturity function in relation to the master curve were related to concrete properties. The shifted maturity functions from the concrete mixtures included in the study had a perfect transition to the master curve (i.e., all the shifted data overlap the master curve trend line with an R2 = 1). The NDTs’ ability to capture the hydration temperature-time history was assessed with impeded sensors into the concrete mixtures. This approach has provided strength prediction models with a high accuracy (i.e., good agreement between observed and predicted strength values with R2 = 0.93). The proposed NDT-based maturity modeling through “master curve” development provides significant benefits in relation to traditional maturity modeling since it offers the opportunity to: (i) predict strength without having to repeat maturity testing each time a producer adjusts mixture proportioning to fine tune mix design; (ii) save testing time and cost due to reduced maturity evaluation from the use of master curves; and (iii) be able to quickly predict without further testing what the strength gain will be due to variations in mixture proportioning. The ability to monitor concrete maturity, and thus strength, with NDTs in reinforced concrete is of particular interest since using cores is problematic due to the presence of reinforcement.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference38 articles.

1. Portland Cement Association (2011). Design and Control of Concrete Mixtures, Portland Cement Association.

2. Neville, A. (2013). Properties of Concrete, Pearson.

3. Popovics, S. (2012). Concrete Materials: Properties, Specifications and Testing, Elsevier.

4. Monteiro, K. (2014). Concrete: Microstructure, Properties, and Materials, McGraw Hill.

5. Mehta, P.K., and Monteiro, J.M. (1996). Concrete Microstructure, McGraw Hill.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3