Real Image Deblurring Based on Implicit Degradation Representations and Reblur Estimation

Author:

Zhao Zihe1,Qin Man1,Gou Haosong2,Wang Zhengyong1,Ren Chao1ORCID

Affiliation:

1. College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China

2. China Mobile Communications Group Sichuan Co., Ltd., Chengdu 610094, China

Abstract

Most existing image deblurring methods are based on the estimation of blur kernels and end-to-end learning of the mapping relationship between blurred and sharp images. However, since different real-world blurred images typically have completely different blurring patterns, the performance of these methods in real image deblurring tasks is limited without explicitly modeling blurring as degradation representations. In this paper, we propose IDR2ENet, which is the Implicit Degradation Representations and Reblur Estimation Network, for real image deblurring. IDR2ENet consists of a degradation estimation process, a reblurring process, and a deblurring process. The degradation estimation process takes the real blurred image as input and outputs the implicit degradation representations estimated on it, which are used as the inputs of both reblurring and deblurring processes to better estimate the features of the blurred image. The experimental results show that whether compared with traditional or deep-learning-based deblurring algorithms, IDR2ENet achieves stable and efficient deblurring results on real blurred images.

Funder

National Natural Science Foundation of China

Key Research and Development Project of Sichuan Province

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference43 articles.

1. Deep image deblurring: A survey;Zhang;Int. J. Comput. Vis.,2022

2. Michaeli, T., and Irani, M. (2014, January 6–12). Blind deblurring using internal patch recurrence. Proceedings of the Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland. Proceedings, Part III 13.

3. Krishnan, D., and Fergus, R. (2009, January 7–10). Fast image deconvolution using hyper-Laplacian priors. Proceedings of the 22nd International Conference on Neural Information Processing Systems (NIPS’ 09), Vancouver, BC, Canada.

4. Fergus, R., Singh, B., Hertzmann, A., Roweis, S.T., and Freeman, W.T. (2006). Acm Siggraph 2006 Papers, ACM.

5. Total variation blind deconvolution;Chan;IEEE Trans. Image Process.,1998

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3