Groundwater Quality Affected by the Pyrite Ash Waste and Fertilizers in Valea Calugareasca, Romania

Author:

Vasilache Nicoleta,Diacu Elena,Modrogan Cristina,Chiriac Florentina LauraORCID,Paun Iuliana Claudia,Tenea Anda Gabriela,Pirvu Florinela,Vasile Gabriela GeaninaORCID

Abstract

The aim of the study was to assess the groundwater quality in a rural area affected by the abandoned pyrite ash waste dumps. The abundance of major ions in groundwater depends largely on the nature of the rocks, climatic conditions, and mobility. To evaluate geochemical processes, 30 groundwater samples collected from Valea Calugareasca, Prahova County, Romania, were analyzed for the major anions (NO3−, SO42−, Cl−, HCO3−, and F−) and cations (Ca2+, Mg2+, Na+, and K+), which are naturally highly variable due to climatic and geographical location conditions. Ca2+, Na+, Mg2+, and K+ varied between 118 and 275 mg/L, 32 and 160 mg/L, 12.2 and 78.4 mg/L, and 0.21 and 4.48 mg/L, respectively. NO3− levels exceeding the World Health Organization (WHO) limit of 50 mg/L were identified in 17% of the groundwater samples, mainly as result of fertilizers applied to agricultural activities. The hydrogeochemical study identified dolomite dissolution and halite precipitation as natural sources of ions as well as the presence of pyrite as a source of SO42− ions in 60% of the samples. The sulfate content varied between 125 and 262 mg/L. Bicarbonate and chloride concentrations varied between 202 and 530 mg/L and 21 and 212 mg/L. The saturation index indicates the contribution of Ca2+ ions in the groundwater samples came from some processes of dissolving rocks such as aragonites (values between 1.27 and 2.69) and calcites (values between 1.43 and 2.82). Negative halite values indicated that salt accumulation results from precipitation processes. Only 10% of the analyzed groundwater samples were suitable for human consumption, the samples being situated on the hill, far away from the pyrite ash waste dumps and agricultural land.

Funder

Ministry of Research, Innovation and Digitization of Romania

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3