Affiliation:
1. Key Laboratory of Collaborative Sensing and Autonomous Unmanned Systems of Zhejiang Province, Zhejiang University, 38 Zheda Rd., Xihu District, Hangzhou 310027, China
Abstract
Weather conditions have significant impacts on the solar concentration processes of the heliostat fields in solar tower power plants. The cloud shadow movements may cause varying solar irradiance levels received by each heliostat. Hence, fixed aiming strategies may not be able to guarantee the solar concentrating performance. Dynamic aiming strategies are able to optimize the aiming strategy based on real-time shadowing conditions and short-term forecast, and, therefore, provide much more robust solar concentration performance compared to fixed strategies. In this work, a model predictive control approach for s heliostat field power regulatory aiming strategy was proposed to regulate the total concentrated solar flux on the central receiver. The model predictive control method obtains the aiming strategy, leveraging real-time and forecast shadowing conditions based on the solar concentration model of the heliostat field. The allowable flux density of the receiver and the aiming angle adjustment limits are also considered as soft and hard constraints in the aiming strategy optimization. A Noor III-like heliostat field sector was studied with a range of shadow-passing scenarios, and the results demonstrated the effectiveness of the proposed method.
Funder
National Key Research and Development Program of China
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction