A Fuzzy Logic Model for Early Warning of Algal Blooms in a Tidal-Influenced River

Author:

Yang Hanjie,Chen Zhaoting,Ye Yingxin,Chen Gang,Zeng Fantang,Zhao Changjin

Abstract

Algal blooms are one of the most serious threats to water resources, and their early detection remains a challenge in eutrophication management worldwide. In recent years, with more widely available real-time auto-monitoring data and the advancement of computational capabilities, fuzzy logic has become a robust tool to establish early warning systems. In this study, a framework for an early warning system was constructed, aiming to accurately predict algae blooms in a river containing several water conservation areas and in which the operation of two tidal sluices has altered the tidal currents. Statistical analysis of sampled data was first conducted and suggested the utilization of dissolved oxygen, velocity, ammonia nitrogen, total phosphorus, and water temperature as inputs into the fuzzy logic model. The fuzzy logic model, which was driven by biochemical data sampled by two auto-monitoring sites and numerically simulated velocity, successfully reproduced algae bloom events over the past several years (i.e., 2011, 2012, 2013, 2017, and 2019). Considering the demands of management, several key parameters, such as onset threshold and prolongation time and subsequent threshold, were additionally applied in the warning system, which achieved a critical success index and positive hit rate values of 0.5 and 0.9, respectively. The differences in the early warning index between the two auto-monitoring sites were further illustrated in terms of tidal influence, sluice operation, and the influence of the contaminated water mass that returned from downstream during flood tides. It is highlighted that for typical tidal rivers in urban areas of South China with sufficient nutrient supply and warm temperature, dissolved oxygen and velocity are key factors for driving early warning systems. The study also suggests that some additional common pollutants should be sampled and utilized for further analysis of water mass extents and data quality control of auto-monitoring sampling.

Funder

Ministry of Ecology and Environment, The People’s Republic of China

Guangdong Science and Technology Department

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3