Three-Dimensional Urban Land Cover Classification by Prior-Level Fusion of LiDAR Point Cloud and Optical Imagery

Author:

Chen YanmingORCID,Liu Xiaoqiang,Xiao Yijia,Zhao Qiqi,Wan Sida

Abstract

The heterogeneity of urban landscape in the vertical direction should not be neglected in urban ecology research, which requires urban land cover product transformation from two-dimensions to three-dimensions using light detection and ranging system (LiDAR) point clouds. Previous studies have demonstrated that the performance of two-dimensional land cover classification can be improved by fusing optical imagery and LiDAR data using several strategies. However, few studies have focused on the fusion of LiDAR point clouds and optical imagery for three-dimensional land cover classification, especially using a deep learning framework. In this study, we proposed a novel prior-level fusion strategy and compared it with the no-fusion strategy (baseline) and three other commonly used fusion strategies (point-level, feature-level, and decision-level). The proposed prior-level fusion strategy uses two-dimensional land cover derived from optical imagery as the prior knowledge for three-dimensional classification. Then, a LiDAR point cloud is linked to the prior information using the nearest neighbor method and classified by a deep neural network. Our proposed prior-fusion strategy has higher overall accuracy (82.47%) on data from the International Society for Photogrammetry and Remote Sensing, compared with the baseline (74.62%), point-level (79.86%), feature-level (76.22%), and decision-level (81.12%). The improved accuracy reflects two features: (1) fusing optical imagery to LiDAR point clouds improves the performance of three-dimensional urban land cover classification, and (2) the proposed prior-level strategy directly uses semantic information provided by the two-dimensional land cover classification rather than the original spectral information of optical imagery. Furthermore, the proposed prior-level fusion strategy provides a series that fills the gap between two- and three-dimensional land cover classification.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province of China

Fundamental Research Funds for the Central Universities of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3