An Improved Fmask Method for Cloud Detection in GF-6 WFV Based on Spectral-Contextual Information

Author:

Yang Xiaomeng,Sun Lin,Tang Xinming,Ai Bo,Xu Hanwen,Wen Zhen

Abstract

GF-6 is the first optical remote sensing satellite for precision agriculture observations in China. Accurate identification of the cloud in GF-6 helps improve data availability. However, due to the narrow band range contained in GF-6, Fmask version 3.2 for Landsat is not suitable for GF-6. Hence, this paper proposes an improved Fmask based on the spectral-contextual information to solve the inapplicability of Fmask version 3.2 in GF-6. The improvements are divided into the following six aspects. The shortwave infrared (SWIR) in the “Basic Test” is replaced by blue band. The threshold in the original “HOT Test” is modified based on the comprehensive consideration of fog and thin clouds. The bare soil and rock are detected by the relationship between green and near infrared (NIR) bands. The bright buildings are detected by the relationship between the upper and lower quartiles of blue and red bands. The stratus with high humidity and fog_W (fog over water) are distinguished by the ratio of blue and red edge position 1 bands. Temperature probability for land is replaced by the HOT-based cloud probability (LHOT), and SWIR in brightness probability is replaced by NIR. The average cloud pixels accuracy (TPR) of the improved Fmask is 95.51%.

Funder

National Natural Science Foundation of China

the SDUST Research Fund

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference36 articles.

1. Benchmarking Deep Learning Models for Cloud Detection in Landsat-8 and Sentinel-2 Images;Dan;Remote. Sens.,2021

2. Technical Characteristic and New Mode Applications of GF-6 Satellite;Lu;Spaceraft Eng.,2021

3. Cloud detection of remote sensing images based on deep learning and condition random field;Yao;Sci. Surv. Mapp.,2019

4. Analyzing the Probability of Acquiring Cloud-Free Imagery in China with AVHRR Cloud Mask Data

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3