Laser-Induced Damage Threshold of Single Crystal ZnGeP2 at 2.1 µm: The Effect of Crystal Lattice Quality at Various Pulse Widths and Repetition Rates

Author:

Yudin Nikolai,Antipov OlegORCID,Eranov Ilya,Gribenyukov Alexander,Verozubova Galina,Lei Zuotao,Zinoviev MikhailORCID,Podzvalov SergeyORCID,Slyunko Elena,Voevodin VladimirORCID,Zav’jalov Alexander,Yang Chunhui

Abstract

The ZnGeP2 crystal is a material of choice for powerful mid-IR optical parametric oscillators and amplifiers. In this paper, we present the experimental analysis of the optical damage threshold of ZnGeP2 nonlinear crystals induced by a repetitively-pulsed Ho3+:YAG laser at 2091 nm. Two types of ZnGeP2 crystals grown under different conditions were examined using the laser and holographic techniques. The laser-induced damage threshold (LIDT) determined by the pulse fluence or peak intensity was studied as a function of the pulse repetition rate (PRR) and laser exposure duration. The main crystal structure factor for a higher LIDT was found to be a reduced dislocation density of crystal lattice. The ZnGeP2 nonlinear crystals characterized by the high structural perfection with low density of dislocations and free from twinning and stacking faults were measured to have a 3.5 J/cm2 pulse fluence damage threshold and 10.5 MW/cm2 peak intensity damage threshold at 12 kHz PRR; at 40 kHz PRR the pulse fluence damage threshold increased to over 6 J/cm2, but the peak intensity damage threshold dropped to 5.5 MW/cm2.

Funder

Ministry of Science and Higher Education of the Russian Federation

Ministry of Education and Science of Russia

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3