Comparison Analysis of the Calculation Methods for Particle Diameter

Author:

Zhang Xiaoxue,Wang Hongyang,Luo LiqunORCID

Abstract

Accurately obtaining the particle diameter is a chief prerequisite to calculating the growth dynamics of metallic iron during the deep reduction of Fe-bearing minerals. In this work, spherical copper powder with a volume moment mean of 70.43 μm was used as a benchmark for measuring the authenticity of the data of the main calculation methods, including the Feret, diameter, equivalent diameter, and equivalent diameter plus correction factor methods. The results show that the measured particle count was less than the theoretical particle count. The particle diameters obtained through the Feret, diameter and equivalent diameter methods were all less than the benchmark, with deviations of 11.15 μm, 14.09 μm, and 12.71 μm, respectively. By contrast, the particle diameter obtained through the equivalent diameter plus correction factor method was slightly higher than the benchmark, with a deviation of 3.09 μm. Therefore, the equivalent diameter plus correction factor method is the most suitable for accurately obtaining the particle diameter, because most profiles do not pass through the particles’ centroid during sample preparation.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3