Simulation of a New CZTS Solar Cell Model with ZnO/CdS Core-Shell Nanowires for High Efficiency

Author:

Wang Chonge,Drame BoubacarORCID,Niare Lucien,Yuegang FuORCID

Abstract

The numerical modeling of Cu2ZnSnS4 solar cells with ZnO/CdS core-shell nanowires of optimal dimensions with and without graphene is described in detail in this study. The COMSOL Simulation was used to determine the optimal values of core diameter and shell thickness by comparing their optical performance and to evaluate the optical and electrical properties of the different models. The deposition of a nanolayer of graphene on the layer of MoS2 made it possible to obtain a maximum absorption of 97.8% against 96.5% without the deposition of graphene.The difference between generation rates and between recombination rates of electron–hole pairs of models with and without graphene is explored.The electrical parameters obtained, such as the filling factor (FF), the short-circuit current density (Jsc), the open-circuit voltage (Voc), and the efficiency (EFF) are, respectively, 81.7%, 6.2 mA/cm2, 0.63 V, and 16.6% in the presence of graphene against 79.2%, 6.1 mA/cm2, 0.6 V, and 15.07% in the absence of graphene. The suggested results will be useful for future research work in the field of CZTS-based solar cells with ZnO/CdS core-shell nanowires with broadband light absorption rates.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Reference120 articles.

1. Simulation of CZTS thin-film solar cell for different buffer layers for high-efficiency performance;Mahbub;South Asian J. Eng. Tech.,2016

2. Effect of CZTS Parameters on Photovoltaic Solar Cell from Numerical Simulation;Benami;J. Energy Power Eng. Sci.,2019

3. Simulation Studies of CZT(S,Se) Single and Tandem Junction Solar Cells Towards Possibilities for Higher Efficiencies up to 22%;Gupta;arXiv,2018

4. Cu2ZnSnS4-type thin film solar cells using abundant materials

5. Cu2ZnSnS4 nanocrystals and graphene quantum dots for photovoltaics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3