Identification, Characterization, and Preliminary X-ray Diffraction Analysis of a Novel Esterase (ScEst) from Staphylococcus chromogenes

Author:

Hwang JisubORCID,Jeon SangeunORCID,Lee Min Ju,Yoo WankiORCID,Chang Juwon,Kim Kyeong KyuORCID,Lee Jun HyuckORCID,Do HackwonORCID,Kim T. Doohun

Abstract

Ester prodrugs can develop novel antibiotics and have potential therapeutic applications against multiple drug-resistant bacteria. The antimicrobial activity of these prodrugs is activated after being cleaved by the esterases produced by the pathogen. Here, novel esterase ScEst originating from Staphylococcus chromogenes NCTC10530, which causes dairy cow mastitis, was identified, characterized, and analyzed using X-ray crystallography. The gene encoding ScEst was cloned into the pVFT1S vector and overexpressed in E. coli. The recombinant ScEst protein was obtained by affinity and size-exclusion purification. ScEst showed substrate preference for the short chain length of acyl derivatives. It was crystallized in an optimized solution composed of 0.25 M ammonium citrate tribasic (pH 7.0) and 20% PEG 3350 at 296 K. A total of 360 X-ray diffraction images were collected at a 1.66 Å resolution. ScEst crystal belongs to the space group of P212121 with the unit cell parameters of a = 50.23 Å, b = 68.69 Å, c = 71.15 Å, and α = β = γ = 90°. Structure refinement after molecular replacement is under progress. Further biochemical studies will elucidate the hydrolysis mechanism of ScEst. Overall, this study is the first to report the functional characterization of an esterase from Staphylococcus chromogenes, which is potentially useful in elaborating its hydrolysis mechanism.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3