New Insight into the Effects of Various Parameters on the Crystallization of Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase (RuBisCO) from Alcaligenes eutrophus

Author:

Choe Hui-WoogORCID,Kim Yong JuORCID

Abstract

Crystallization remains a bottleneck for determining the three-dimensional X-ray structure of proteins. Many parameters influence the complexity of protein crystallization. Therefore, it is not easy to systematically examine all of these parameters individually during crystallization because of a limited quantity of purified protein. We studied several factors that influence crystallization including protein concentration, pH, temperature, age, volume of crystallization, inhibitors, metal ions, seeding, and precipitating agents on RuBisCO samples from Alcaligenes eutrophus which are not only freshly purified, but are also dissolved both individually and in combination from microcrystals and precipitated droplets of recycled RuBisCO. Single-, twin-, and/or microcrystals are dependent upon the concentration of RuBisCO by both RuBisCO samples. The morphology, either orthorhombic- or monoclinic-space group, depends upon pH. Furthermore, ammonium sulfate((NH4)2SO4) concentration at 20 °C (22% saturated) and/or at 4 °C (28% saturated) affected the crystallization of RuBisCO differently from one another. Finally, the age of RuBisCO also affected more uniformity and forming sharp edge during crystallization. Unexpected surprising monoclinic RuBisCO crystals were grown from dissolved microcrystals and precipitated droplets recycled RuBisCO samples. This quaternary RuBisCO single crystal, which contained Mg2+ and HCO3 for an activated ternary complex and is inhibited with a transition substrate analogue, CABP (2-carboxyarabinitol-1,5-bisphosphate)−, diffracts better than 2.2 Å. It is different from Hansen S. et al. reported RuBisCO crystals which were grown ab initio in absence of Mg2+, HCO3− and CABP, a structure which was determined at 2.7 Å resolution.

Funder

Basic Science Research Program of the National Research Foundation funded by the Min-istry of Science

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Reference49 articles.

1. Principles of Protein Structure;Schulz,2013

2. Proteins

3. Ribonucleoprotein infrastructure regulating the flow of genetic information between the genome and the proteome

4. Enzyme Structure and Mechanism;Fersht,1977

5. Protein structure determination by X-ray crystallography;Ilari;Bioinformatics,2008

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3