Adaptive Predefined-Time Sliding Mode Control for QUADROTOR Formation with Obstacle and Inter-Quadrotor Avoidance

Author:

Liu Hao1ORCID,Tu Haiyan1ORCID,Huang Shan1,Zheng Xiujuan1ORCID

Affiliation:

1. Key Laboratory of Information and Automation Technology of Sichuan Province, Department of Automation, College of Electrical Engineering, Sichuan University, Chengdu 610065, China

Abstract

In this paper, aiming at the problem of control and obstacle avoidance in quadrotor formation when mathematical modeling is not accurate, the artificial potential field method with virtual force is used to plan the obstacle avoidance path of quadrotor formation to solve the problem that the artificial potential field method may fall into local optimal. The adaptive predefined-time sliding mode control algorithm based on RBF neural networks enables the quadrotor formation to track the planned trajectory in a predetermined time and also adaptively estimates the unknown interference in the mathematical model of the quadrotor to improve the control performance. Through theoretical derivation and simulation experiments, this study verified that the proposed algorithm can make the planned trajectory of the quadrotor formation avoid obstacles and make the error between the true trajectory and the planned trajectory converge within a predetermined time under the premise of adaptive estimation of unknown interference in the quadrotor model.

Funder

Science and Technology Department of Sichuan Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3