Effect of a Support on the Properties of Zinc Oxide Based Sorbents

Author:

Chomiak Maciej,Szyja Bartłomiej M.ORCID,Jędrysiak Marta,Trawczyński JanuszORCID

Abstract

We present the comparative analysis of three Zn-based sorbents for the process of sulphur removal from hot coal gas. The sorbents were prepared by a slurry impregnation of TiO2, SiO2 and Al2O3, resulting in complex, multiphase materials, with the dominant phases of Zn2TiO4, Zn2SiO4 and ZnAl2O4, respectively. We have analyzed the effect of supports on the phase composition, texture, reducibility and H2S sorption. We have found that the phase composition significantly influences the susceptibility of the investigated materials to reduction by hydrogen. Zn2TiO4 have been found to be the easiest to reduce which correlates with its ability to adsorb the largest amount of hydrogen sulphide—up to 4.2 gS/100 g—compared to the other sorbents, which absorb up to 2.2 gS/100 g. In the case of Zn2SiO4 and ZnAl2O4, this effect also correlates with reducibility—these sorbents have been found to be highly resistant to reduction by hydrogen and to absorb much less hydrogen sulphide. In addition, the capacity of ZnAl2O4 for H2S adsorption decreases in the subsequent work cycles—from 2.2 gS/100 g in the first cycle to 0.8 gS/100 g in the third one. Computational analysis on the DFT level has shown that these materials show different thermodynamic stability of sulphur sites within the unit cells of the sorbents. For Zn2TiO4 and Zn2SiO4, the adsorption is favorable in both the first and second layers of the former and only the top layer of the latter, while for zinc aluminate it is not favorable, which is consistent with the experimental findings.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3