Numerical Investigation on Injected-Fluid Recovery and Production Performance following Hydraulic Fracturing in Shale Oil Wells

Author:

Liao Kai,Zhu Jian,Sun Xun,Zhang Shicheng,Ren Guangcong

Abstract

Currently, volume fracturing of horizontal wells is the main technology for shale oil development. A large amount of fracturing fluid is injected into the formation, but the flowback efficiency is very low. Besides, the impact of fluid retention on productivity is not fully clear. There is still a debate about fast-back or slow-back after fracturing, and the formulation of a reasonable cleanup scheme is lacking a theoretical basis. To illustrate the injected-fluid recovery and production performance of shale oil wells, an integrated workflow involving a complex fracture model and oil-water production simulation was presented, enabling a confident history match of flowback data. Then, the impacts of pumping rate, slick water ratio, cluster spacing, stage spacing and flowback rate were quantitatively analyzed. The results show that the pumping rate is negatively correlated with injected-fluid recovery, but positively correlated with oil production. A high ratio of slick water would induce a quite complex fracture configuration, resulting in a rather low flowback efficiency. Meanwhile, the overall conductivity of the fracture networks would also be reduced, as well as the productivity, which indicates that there is an optimal ratio for hybrid fracturing fluid. Due to the fracture interference, the design of stage or cluster spacing is not the smaller the better, and needs to be combined with the actual reservoir conditions. In addition, the short-term flowback efficiency and oil production increase with the flowback rate. However, considering the damage of pressure sensitivity to long-term production, a slow-back mode should be adopted for shale oil wells. The study results may provide support for the design of a fracturing scheme and the optimization of the flowback schedule for shale oil reservoirs.

Funder

Research Foundation of China University of Petroleum-Beijing at Karamay

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference34 articles.

1. Key exploration & development technologies and engineering practice of continental shale oil: A case study of Member 2 of Paleogene Kongdian Formation in Cangdong Sag, Bohai Bay Basin, East China;Zhou;Pet. Explor. Dev.,2020

2. Research status and development trend of the formation mechanism of complex fractures by staged volume fracturing in horizontal wells;Pu;Acta Pet. Sin.,2020

3. Slickwater Fracturing: Food for Thought

4. Stress sensitivity analysis and optimization of horizontal well flowback system for shale oil reservoir in Ordos Basin;Gao;Nat. Gas Geosci.,2021

5. Experimental Investigation of Fracturing-Fluid Migration Caused by Spontaneous Imbibition in Fractured Low-Permeability Sands

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3