Author:
Liao Kai,Zhu Jian,Sun Xun,Zhang Shicheng,Ren Guangcong
Abstract
Currently, volume fracturing of horizontal wells is the main technology for shale oil development. A large amount of fracturing fluid is injected into the formation, but the flowback efficiency is very low. Besides, the impact of fluid retention on productivity is not fully clear. There is still a debate about fast-back or slow-back after fracturing, and the formulation of a reasonable cleanup scheme is lacking a theoretical basis. To illustrate the injected-fluid recovery and production performance of shale oil wells, an integrated workflow involving a complex fracture model and oil-water production simulation was presented, enabling a confident history match of flowback data. Then, the impacts of pumping rate, slick water ratio, cluster spacing, stage spacing and flowback rate were quantitatively analyzed. The results show that the pumping rate is negatively correlated with injected-fluid recovery, but positively correlated with oil production. A high ratio of slick water would induce a quite complex fracture configuration, resulting in a rather low flowback efficiency. Meanwhile, the overall conductivity of the fracture networks would also be reduced, as well as the productivity, which indicates that there is an optimal ratio for hybrid fracturing fluid. Due to the fracture interference, the design of stage or cluster spacing is not the smaller the better, and needs to be combined with the actual reservoir conditions. In addition, the short-term flowback efficiency and oil production increase with the flowback rate. However, considering the damage of pressure sensitivity to long-term production, a slow-back mode should be adopted for shale oil wells. The study results may provide support for the design of a fracturing scheme and the optimization of the flowback schedule for shale oil reservoirs.
Funder
Research Foundation of China University of Petroleum-Beijing at Karamay
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering