Factors Affecting the Natural Regeneration of the Larix principis-rupprechtii Mayr Plantations: Evidence from the Composition and Co-Occurrence Network Structure of Soil Bacterial Communities

Author:

Niu Yajie,Liang Wenjun,Wei Xi,Han Youzhi

Abstract

Bacterial communities living in the soil can affect forests natural regeneration, but the effects of their composition and network inference on regeneration of Larix principis-rupprechtii Mayr plantations remain largely elusive. Therefore, the redundancy analysis and structure equations modeling of affecting elements for the regeneration of L. principis-rupprechtii plots including the diversity, composition and network structure of soil bacteria, topographic factors, light factors, and soil physicochemical properties have been conducted. It was found that the increased modularity of the soil bacterial community co-occurrence network and the enrichment of metabolic pathway bacteria had a significant positive effect on the successful regeneration (total effect of 0.84). The complexity of the soil bacterial community gradually decreased with the increase of stand regeneration, and the composition and structure of the flora became simpler (with standard path coefficients: −0.70). In addition, altitude also had a positive effect on regeneration with a total effect of 0.39. Soil nutrients had significantly negative effects on regeneration with total effects of −0.87. Soil bacterial communities may mediate the effects of soil nutrients, altitude, litter thickness, and herbaceous diversity on regeneration in L. principis-rupprechtii plantations. The results provide a great contribution to our understanding of regeneration-soil bacterial community interactions and the basis and important data for sustainable management of L. principis-rupprechtii plantations in the Lvliang Mountains located in northern China.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3