Digital Food Twins Combining Data Science and Food Science: System Model, Applications, and Challenges

Author:

Krupitzer ChristianORCID,Noack TanjaORCID,Borsum Christine

Abstract

The production of food is highly complex due to the various chemo-physical and biological processes that must be controlled for transforming ingredients into final products. Further, production processes must be adapted to the variability of the ingredients, e.g., due to seasonal fluctuations of raw material quality. Digital twins are known from Industry 4.0 as a method to model, simulate, and optimize processes. In this vision paper, we describe the concept of a digital food twin. Due to the variability of the raw materials, such a digital twin has to take into account not only the processing steps but also the chemical, physical, or microbiological properties that change the food independently from the processing. We propose a hybrid modeling approach, which integrates the traditional approach of food process modeling and simulation of the bio-chemical and physical properties with a data-driven approach based on the application of machine learning. This work presents a conceptual framework for our digital twin concept based on explainable artificial intelligence and wearable technology. We discuss the potential in four case studies and derive open research challenges.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference47 articles.

1. Digital Twin

2. Die Ernährung 4.0-Status Quo, Chancen und Herausforderungen https://www.bitkom.org/sites/default/files/2019-03/Bitkom-Charts%20190326%20Digitalisierung%20der%20Ern%C3%A4hrungsindustrie.pdf

3. A survey on engineering approaches for self-adaptive systems

4. Can a Byte Improve Our Bite? An Analysis of Digital Twins in the Food Industry

5. Machine learning applied in production planning and control: a state-of-the-art in the era of industry 4.0

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3