Abstract
Automatic building extraction using a single data type, either 2D remotely-sensed images or light detection and ranging 3D point clouds, remains insufficient to accurately delineate building outlines for automatic mapping, despite active research in this area and the significant progress which has been achieved in the past decade. This paper presents an effective approach to extracting buildings from Unmanned Aerial Vehicle (UAV) images through the incorporation of superpixel segmentation and semantic recognition. A framework for building extraction is constructed by jointly using an improved Simple Linear Iterative Clustering (SLIC) algorithm and Multiscale Siamese Convolutional Networks (MSCNs). The SLIC algorithm, improved by additionally imposing a digital surface model for superpixel segmentation, namely 6D-SLIC, is suited for building boundary detection under building and image backgrounds with similar radiometric signatures. The proposed MSCNs, including a feature learning network and a binary decision network, are used to automatically learn a multiscale hierarchical feature representation and detect building objects under various complex backgrounds. In addition, a gamma-transform green leaf index is proposed to truncate vegetation superpixels for further processing to improve the robustness and efficiency of building detection, the Douglas–Peucker algorithm and iterative optimization are used to eliminate jagged details generated from small structures as a result of superpixel segmentation. In the experiments, the UAV datasets, including many buildings in urban and rural areas with irregular shapes and different heights and that are obscured by trees, are collected to evaluate the proposed method. The experimental results based on the qualitative and quantitative measures confirm the effectiveness and high accuracy of the proposed framework relative to the digitized results. The proposed framework performs better than state-of-the-art building extraction methods, given its higher values of recall, precision, and intersection over Union (IoU).
Funder
National Natural Science Foundation of China
Natural Science Foundation of Jiangxi Province of China
Subject
General Earth and Planetary Sciences
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Methods and datasets on semantic segmentation for Unmanned Aerial Vehicle remote sensing images: A review;ISPRS Journal of Photogrammetry and Remote Sensing;2024-05
2. Building segmentation from UAV orthomosaics using unet-resnet-34 optimised with grey wolf optimisation algorithm;Smart Construction and Sustainable Cities;2023-12-12
3. Roof type classification with innovative machine learning approaches;PeerJ Computer Science;2023-01-25
4. Feature Extraction in Urban Areas Using UAV Data;Lecture Notes in Civil Engineering;2023
5. PUNet: Convolutional Networks based on Parallel Feature Fusion;2022 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech);2022-09-12