Abstract
Graph isomorphism is to determine whether two graphs have the same topological structure. It plays a significant role in areas of image matching, biochemistry, and information retrieval. Quantum walk, as a novel quantum computation model, has been employed to isomorphic mapping detection to optimize the time complexity compared with a classical computation model. However, these quantum-inspired algorithms do not perform well—and even cease to work—for graphs with inherent symmetry, such as regular graphs. By analyzing the impacts of graphs symmetry on isomorphism detection, we proposed an effective graph isomorphism algorithm (MapEff) based on the discrete-time quantum walk (DTQW) to improve the accuracy of isomorphic mapping detection, especially for regular graphs. With the help of auxiliary edges, this algorithm can distinguish the symmetric nodes efficiently and, thus, deduct the qualified isomorphic mapping by rounds of selections. The experiments tested on 1585 pairs of graphs demonstrated that our algorithm has a better performance compared with other state-of-the-art algorithms.
Funder
The National Key Research and Development Program of China
Subject
General Physics and Astronomy
Reference32 articles.
1. Graph matching using the interference of discrete-time quantum walks
2. A subgraph isomorphism algorithm and its application to biochemical data
3. Graph matching: Theoretical foundations, algorithms, and applications;Bunke;Proc. Vis. Interface,2000
4. Computers and Intractability: A Guide to the Theory of NP-completeness, Freeman;Garey,1997
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献