New Approaches for Supervision of Systems with Sliding Wear: Fundamental Problems and Experimental Results Using Different Approaches

Author:

Söffker DirkORCID,Rothe Sandra

Abstract

Reliability and availability of technically complex and safety-critical systems are of increasing importance. Besides the degree of wear, the quality of mechanical systems is significant for the system reliability. The focus of this contribution is the development and application of readily applicable and easily interpretable algorithms for industrial data obtained from technical systems during operation. The methods are within the focus of the production-oriented automation programs (Industrial Internet, Automation 4.0, China 2025). In this contribution as example a hydraulically driven machine in which parts slide over each other is chosen as sliding wear example. Monitoring is applied to distinguish normal and abnormal operation as well as to define end of useful lifetime. In this contribution four different methods will be introduced and experimentally compared without the availability of objective information about the wear state. The approaches differ with respect to the used measurements and data preparation. As measurements Acoustic Emission and the hydraulic pressure of the driving machine are used. For processing the accumulation of damage related values, a machine learning algorithm, and a sensitivity matrix are used. For comparison the experimental validation is based on identical data sets. Different operational states of the system denoted as actual system state are defined and classified. The comparison shows that the four introduced methods provide similar classification results although the underlying measurements are based on different physical principles. The newly introduced approaches allow online evaluation of the actual system state and can serve within improved maintenance strategies.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3