Enhancing the Efficiency of Resilient Multipath-Routed Elastic Optical Networks: A Novel Approach for Coexisting Protected and Unprotected Services with Idle Slot Reuse

Author:

Cavalcanti Michael M. L.1,Teixeira Gabriela W.1,Dinarte Henrique A.1,Almeida Raul C.23,Boutaba Raouf3,Chaves Daniel A. R.1ORCID

Affiliation:

1. Polytechnic School of Pernambuco (Poli), University of Pernambuco (UPE), Recife 50720-001, PE, Brazil

2. Department of Electronics and Systems (DES), Universidade Federal de Pernambuco (UFPE), Recife 50740-550, PE, Brazil

3. David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada

Abstract

In this paper, we investigate a scenario in which protected and unprotected services coexist in an elastic optical network under dynamic traffic. In the investigated scenario, unprotected services can reuse the reserved idle bandwidth to provide protection to the protected services. Under this scenario, we propose a new heuristic algorithm that enables such reuse as well as define and introduce a new assignment problem in elastic optical networks, named a Transmission Spectrum Assignment (T-SA) problem. In this paper, we consider a scenario in which services may be routed using the multipath routing approach. Additionally, protection using bandwidth squeezing is also considered. We assess our proposal through simulations on three different network topologies and compare our proposal against the classical protection approach, in which bandwidth reuse is not allowed. For the simulated range of network loads, the maximum (minimum) blocking probability reduction obtained by our proposal is approximately 48% (10%) in the European topology, 46% (7%) in the NSFNET topology, and 32% (6%) in the German topology.

Funder

National Council for Scientific and Technological Development

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3