A Multi-Task Consistency Enhancement Network for Semantic Change Detection in HR Remote Sensing Images and Application of Non-Agriculturalization

Author:

Lin Haihan1,Wang Xiaoqin1,Li Mengmeng1,Huang Dehua2,Wu Ruijiao2

Affiliation:

1. Key Lab of Spatial Data Mining & Information Sharing of Ministry of Education, Academy of Digital China (Fujian), Fuzhou University, Fuzhou 350108, China

2. Fujian Geologic Surveying and Mapping Institute, Fuzhou 350108, China

Abstract

It is challenging to investigate semantic change detection (SCD) in bi-temporal high-resolution (HR) remote sensing images. For the non-changing surfaces in the same location of bi-temporal images, existing SCD methods often obtain the results with frequent errors or incomplete change detection due to insufficient performance on overcoming the phenomenon of intraclass differences. To address the above-mentioned issues, we propose a novel multi-task consistency enhancement network (MCENet) for SCD. Specifically, a multi-task learning-based network is constructed by combining CNN and Transformer as the backbone. Moreover, a multi-task consistency enhancement module (MCEM) is introduced, and cross-task mapping connections are selected as auxiliary designs in the network to enhance the learning of semantic consistency in non-changing regions and the integrity of change features. Furthermore, we establish a novel joint loss function to alleviate the negative effect of class imbalances in quantity during network training optimization. We performed experiments on publicly available SCD datasets, including the SECOND and HRSCD datasets. MCENet achieved promising results, with a 22.06% Sek and a 37.41% Score on the SECOND dataset and a 14.87% Sek and a 30.61% Score on the HRSCD dataset. Moreover, we evaluated the applicability of MCENet on the NAFZ dataset that was employed for cropland change detection and non-agricultural identification, with a 21.67% Sek and a 37.28% Score. The relevant comparative and ablation experiments suggested that MCENet possesses superior performance and effectiveness in network design.

Funder

Fujian Science and Technology Plan Project

Fujian Water Science and Technology Project

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3