Abstract
This study proposes a non-enzymatic glucose sensor fabricated by synthesizing high-purity TiO2 nanoparticles in thermal plasma and depositing it directly on a substrate and then depositing chitosan–polypyrrole (CS-PPy) conductive polymer films by electrochemical method. The structural properties of the deposited TiO2 nanoparticles were analyzed by X-ray diffraction (XRD) and dynamic light scattering (DLS) system. The chemical composition and structural properties of the TiO2 nanoparticle layer and the conductive polymer films were confirmed by X-ray photoelectron spectroscopy (XPS) spectra and scanning electron microscope (SEM). The glucose detection characteristics of the fabricated biosensor were determined by cyclic voltammetry (CV). CS-PPy/TiO2 biosensor showed high sensitivity of 302.0 µA mM−1 cm−2 (R2 = 0.9957) and low detection limit of 6.7 μM. The easily manufactured CS-PPy/TiO2 biosensor showed excellent selectivity and reactivity.
Funder
National Research Foundation of Korea
Subject
Clinical Biochemistry,General Medicine
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献