Affiliation:
1. Graduate School of Planning, University of Puerto Rico Rio Piedras Campus, San Juan 00921, Puerto Rico
2. Atmospheric Sciences Laboratory, University of Puerto Rico at Carolina, Carolina 00984, Puerto Rico
Abstract
This study investigates the temporal trends and correlations between Saharan dust mass concentration densities (DMCD) and Sargassum concentrations (SCT) in the tropical North Atlantic. Average DMCD data for June, July, and August from 1980 to 2022, alongside SCT data for the same months from 2012 to 2022, were analyzed using Mann–Kendall tests for trends and lagged regression models to assess whether higher Saharan dust levels correlate with Sargassum outbreaks in the region. A comprehensive analysis reveals a significant upward trend in Saharan dust quantities over the study period, with the summer months of June, July, and August exhibiting consistent increases. Notably, 2018 and 2020 recorded the highest mean DMCD levels, with June showing the most significant increasing trend, peaking in 2019. These findings are consistent with previous studies indicating a continuous elevation in Saharan dust concentrations in the tropical atmosphere of the North Atlantic. Simultaneously, Sargassum concentrations also show a notable increasing trend, particularly in 2018, which experienced both peak SCT and elevated DMCD levels. Mann–Kendall tests confirm statistically significant upward trends in both Saharan dust and Sargassum concentrations. Simple linear regression and lagged regression analyses reveal positive correlations between DMCD and SCT, highlighting a temporal component with stronger associations observed in July and the overall June–July–August (JJA) period. These results underscore the potential contribution of elevated Saharan dust concentrations to the recent surge in Sargassum outbreaks in the tropical North Atlantic. Furthermore, the results from forward stepwise regression (FSR) models indicate that DMCD and chlorophyll (CHLO) are the most critical predictors of SCT for the summer months, while sea surface temperature (SST) was not a significant predictor. These findings emphasize the importance of monitoring Saharan dust and chlorophyll trends in the Eastern Caribbean, as both factors are essential for improving Sargassum modeling and prediction in the region. This study provides valuable insights into the climatic factors influencing marine ecosystems and highlights the need for integrated environmental monitoring to manage the impacts on coastal economies.