A Hybrid Intelligent Simulation System for Building IoT Networks: Performance Comparison of Different Router Replacement Methods for WMNs Considering Stadium Distribution of IoT Devices

Author:

Barolli Admir,Sakamoto ShinjiORCID,Bylykbashi KevinORCID,Barolli LeonardORCID

Abstract

As the Internet of Things (IoT) devices and applications proliferate, it becomes increasingly important to design robust networks that can continue to meet user demands at a high level. Wireless local area networks (WLANs) can be a good choice as IoT infrastructure when high throughput is required. On the other hand, wireless mesh networks (WMNs), which are WLANs with mesh topology following the IEEE802.11s standard, have many advantages compared to conventional WLANs. Nevertheless, there are some problems that need solutions. One of them is the node placement problem. In this work, we propose and implement a hybrid intelligent system that solves this problem by determining the position of mesh nodes by maximizing the mesh connectivity and the coverage of IoT devices. The system is based on particle swarm optimization (PSO), simulated annealing (SA), and distributed genetic algorithm (DGA). We compare the performance of three router replacement methods: constriction method (CM), random inertia weight method (RIWM), and rational decrement of Vmax method (RDVM). The simulation results show that RIWM achieves better performance compared to CM and RDVM because it achieves the highest connectivity while covering more clients than the other two methods.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3