Development of a Novel Open Control System Implementation Method under Industrial IoT

Author:

Liu Lisi1ORCID,Xu Zijie1,Qu Xiaobin2ORCID

Affiliation:

1. College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, China

2. China Nuclear Power Technology Research Institute Co., Ltd., Shenzhen 518000, China

Abstract

The closed architecture of modern control systems impedes them from further development in the environment of the industrial IoT. The open control system is proposed to tackle this issue. Numerous open control prototypes have been proposed, but they do not reach high openness. According to the definition and criteria of open control systems, this paper suggests that the independence between control tasks and the independence between control tasks and infrastructures are the keys to the open control system under the industrial IoT. Through the control domain’s formal description and control task virtualization to deal with the keys, this paper proposes a new method to implement open control systems under the industrial IoT. Specifically, given the hybrid characteristic of the control domain, a hierarchical semantic formal based on an extended finite state machine and a dependency network model with the time property is designed to describe the control domain. Considering the infrastructure’s heterogeneity in the industrial IoT, a hybrid virtualization approach based on containers and WebAssembly is designed to virtualize control tasks. The proposed open control system implementation method is illustrated by constructing an open computer numerical control demonstration and compared to current open control prototypes.

Funder

Science, Technology and Innovation Commission of Shenzhen Municipality

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3