Downregulation of the Netrin-1 Receptor UNC5b Underlies Increased Placental Angiogenesis in Human Gestational Diabetes Mellitus

Author:

Prieto Catalina,Casas Bárbara,Falcón Paulina,Villanueva Andrea,Lois Pablo,Lattus José,Palma VerónicaORCID

Abstract

Gestational diabetes mellitus (GDM) is a common metabolic disorder, defined by high blood glucose levels during pregnancy, which affects foetal and post-natal development. However, the cellular and molecular mechanisms of this detrimental condition are still poorly understood. A dysregulation in circulating angiogenic trophic factors, due to a dysfunction of the feto-placental unit, has been proposed to underlie GDM. But even the detailed study of canonical pro-angiogenic factors like vascular endothelial growth factor (VEGF) or basic Fibroblast Growth Factor (bFGF) has not been able to fully explain this detrimental condition during pregnancy. Netrins are non-canonical angiogenic ligands produced by the stroma have shown to be important in placental angiogenesis. In order to address the potential role of Netrin signalling in GDM, we tested the effect of Netrin-1, the most investigated member of the family, produced by Wharton’s Jelly Mesenchymal Stem Cells (WJ-MSC), on Human Umbilical Vein Endothelial Cells (HUVEC) angiogenesis. WJ-MSC and HUVEC primary cell cultures from either healthy or GDM pregnancies were exposed to physiological (5 mM) or high (25 mM) d-glucose. Our results reveal that Netrin-1 is secreted by WJ-MSC from healthy and GDM and both expression and secretion of the ligand do not change with distinct experimental glucose conditions. Noteworthy, the expression of its anti-angiogenic receptor UNC5b is reduced in GDM HUVEC compared with its expression in healthy HUVEC, accounting for an increased Netrin-1 signalling in these cells. Consistently, in healthy HUVEC, UNC5b overexpression induces cell retraction of the sprouting phenotype.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3