Effects of Shaft Tuyere Parameters on Gas Movement Behavior and Burden Reduction in Oxygen Blast Furnace

Author:

Zhang Zedong12,Tang Jue123,Shi Quan12,Chu Mansheng24

Affiliation:

1. School of Metallurgy, Northeastern University, 3-11 Wenhua Road, Heping District, Shenyang 110819, China

2. Engineering Research Center of Frontier Technologies for Low-Carbon Steelmaking, Shenyang 110819, China

3. Liaoning Province Engineering Research Center for Technologies of Low-Carbon Steelmaking, Northeastern University, 3-11 Wenhua Road, Heping District, Shenyang 110819, China

4. Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, 3-11 Wenhua Road, Heping District, Shenyang 110819, China

Abstract

Parameters of shaft tuyere have vital effects on the gas flow distribution and working condition in the TGR-OBF, which determine the production index, CO2 emission reduction, and economic benefit. To clarify the effects of shaft tuyere parameters on gas movement behavior and burden reduction in oxygen blast furnaces, a 2D steady-state model based on actual plant conditions in China is published in this study. The shaft of the blast furnace can be divided into region I near the wall and region II close to the center, which was influenced by top gas and bosh gas, respectively. The farthest movement distance of the top gas along the radial direction was defined as the penetration depth decided by its kinetic energy ratio. As the height of shaft tuyere decreased from 5/10 L to 1/10 L, the penetration depth decreased from 1.615 m to 1.308 m, and the reduction degree of iron-bearing burden before entering the cohesive zone increased from 0.925 to 0.982. With the shaft tuyere diameters increased from 0.088 m to 0.096 m with a constant blast velocity, the penetration depth was kept elongated at 1.24 m, and the reduction degree before entering the cohesive zone increased from 0.972 to 0.983. While the blast volume of top gas was kept constant, the reduction degree before entering the cohesive zone increased from 0.969 to 0.986. When the shaft tuyere angles increased from −20° to 20°, both the distribution of temperature and CO fraction moved towards the upper shaft slightly, and the penetration depth was kept around 1.24. Under experimental conditions, a low-height shaft tuyere was appropriate for an oxygen blast furnace. Within a certain control range, the changes of shaft tuyere diameters and angles had a small effect on the oxygen blast furnace.

Funder

Fundamental Research Funds for the Central Universities

General Program of National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3