A Deep Learning Strategy for the Retrieval of Sea Wave Spectra from Marine Radar Data

Author:

Ludeno Giovanni1ORCID,Esposito Giuseppe1ORCID,Lugni Claudio2ORCID,Soldovieri Francesco1ORCID,Gennarelli Gianluca1ORCID

Affiliation:

1. Institute for Electromagnetic Sensing of the Environment, National Research Council of Italy, Via Diocleziano 328, 80124 Napoli, Italy

2. Institute of Marine Engineering, National Research Council of Italy, Via di Vallerano 139, 00128 Rome, Italy

Abstract

In the context of sea state monitoring, reconstructing the wave field and estimating the sea state parameters from radar data is a challenging problem. To reach this goal, this paper proposes a fully data-driven, deep learning approach based on a convolutional neural network. The network takes as input the radar image spectrum and outputs the sea wave directional spectrum. After a 2D fast Fourier transform, the wave elevation field is reconstructed, and accordingly, the sea state parameters are estimated. The reconstruction strategy, herein presented, is tested using numerical data generated from a synthetic sea wave simulator, considering the spectral proprieties of the Joint North Sea Wave Observation Project model. A performance analysis of the proposed deep-learning estimation strategy is carried out, along with a comparison to the classical modulation transfer function approach. The results demonstrate that the proposed approach is effective in reconstructing the directional wave spectrum across different sea states.

Funder

STRIVE—La scienza per le transizioni industriali, verde, energetica

European Union

Ministry of the Environment and Energy Safety

European Union-NextGenerationEU

European Union’s Horizon Europe research and innovation program

Publisher

MDPI AG

Reference47 articles.

1. Radio science and oceanography;Shearman;Radio Sci.,1983

2. Ludeno, G., and Uttieri, M. (2020). Editorial for Special Issue “Radar Technology for Coastal Areas and Open Sea Monitoring”. J. Mar. Sci. Eng., 8.

3. Roarty, H., Cook, T., Hazard, L., and George, D. (2019). The Global High Frequency Radar Network. Front. Mar. Sci., 6.

4. Maa, J.P.-Y. (2006). X-band radar wave observation system. Field Testing of a Physical/Biological Monitoring Methodology for Offshore Dredging and Mining Operations, U.S. Department of the Interior, Minerals Management Service.

5. Measuring currents, ice drift, and waves from space: The Sea Surface Kinematics Multiscale monitoring (SKIM) concept;Ardhuin;Ocean Sci.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3