MSFE-UIENet: A Multi-Scale Feature Extraction Network for Marine Underwater Image Enhancement

Author:

Zhao Shengya12,Mei Xinkui1ORCID,Ye Xiufen1ORCID,Guo Shuxiang3

Affiliation:

1. College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China

2. Deep Sea Technology Department, National Deep Sea Center, Qingdao 266037, China

3. Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen 518055, China

Abstract

Underwater optical images have outstanding advantages for short-range underwater target detection tasks. However, owing to the limitations of special underwater imaging environments, underwater images often have several problems, such as noise interference, blur texture, low contrast, and color distortion. Marine underwater image enhancement addresses degraded underwater image quality caused by light absorption and scattering. This study introduces MSFE-UIENet, a high-performance network designed to improve image feature extraction, resulting in deep-learning-based underwater image enhancement, addressing the limitations of single convolution and upsampling/downsampling techniques. This network is designed to enhance the image quality in underwater settings by employing an encoder–decoder architecture. In response to the underwhelming enhancement performance caused by the conventional networks’ sole downsampling method, this study introduces a pyramid downsampling module that captures more intricate image features through multi-scale downsampling. Additionally, to augment the feature extraction capabilities of the network, an advanced feature extraction module was proposed to capture detailed information from underwater images. Furthermore, to optimize the network’s gradient flow, forward and backward branches were introduced to accelerate its convergence rate and improve stability. Experimental validation using underwater image datasets indicated that the proposed network effectively enhances underwater image quality, effectively preserving image details and noise suppression across various underwater environments.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3