Effect of the Combination of Torsional and Tensile Stress on Corrosion Behaviors of Biodegradable WE43 Alloy in Simulated Body Fluid

Author:

Wang Bowen1,Gao Wei1,Pan Chao2,Liu Debao3,Sun Xiaohao4

Affiliation:

1. School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China

2. Beijing Chunlizhengda Medical Instruments Co., Ltd., Beijing 300384, China

3. National Demonstration Center for Experimental Function Materials Education, Tianjin University of Technology, Tianjin 300384, China

4. Tianjin Key Laboratory for Photoelectric Materials and Devices, Tianjin 300384, China

Abstract

The real physiological environment of the human body is complicated, with different degrees and forms of loads applied to biomedical implants caused by the daily life of the patients, which will definitely influence the degradation behaviors of Mg-based biodegradable implants. In the present study, the degradation behaviors of modified WE43 alloys under the combination of torsional and tensile stress were systematically investigated. Slow strain rate tensile tests revealed that the simulated body fluid (SBF) solution could deteriorate the ultimate tensile stress of WE43 alloy from 210.1 MPa to 169.2 MPa. In the meantime, the fracture surface of the specimens tested in the SBF showed an intergranular corrosion morphology in the marginal region, while the central area appeared not to have been affected by the corrosive media. The bio-degradation performances under the combination of torsional and tensile stressed conditions were much more severe than those under unstressed conditions or single tensile stressed situations. The combination of 40 MPa tensile and 40 MPa torsional stress resulted in a degradation rate over 20 mm/y, which was much higher than those under 80 MPa single tensile stress (4.5 mm/y) or 80 MPa single torsional stress (13.1 mm/y). The dynamic formation and destruction mechanism of the protective corrosion products film on the modified WE43 alloy could attribute to the exacerbated degradation performance and the unique corrosion morphology. The dynamic environment and multi-directional loading could severely accelerate the degradation process of modified WE43 alloy. Therefore, the SCC susceptibility derived from a single directional test may be not suitable for practical purposes. Complex external stress was necessary to simulate the in vivo environment for the development of biodegradable Mg-based implants for clinical applications.

Funder

National Natural Science Foundation of China

Tianjin Natural Science Foundation

Publisher

MDPI AG

Subject

Biomedical Engineering,Biomaterials

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3