Urbanization Trends Analysis Using Hybrid Modeling of Fuzzy Analytical Hierarchical Process-Cellular Automata-Markov Chain and Investigating Its Impact on Land Surface Temperature over Gharbia City, Egypt

Author:

Mostafa Eman12,Li Xuxiang1ORCID,Sadek Mohammed2

Affiliation:

1. Department of Earth & Environmental Science, Institute of Global Environmental Change, School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an 710049, China

2. Geomatics Engineering Department, Faculty of Engineering at Shoubra, Benha University, Banha 13511, Egypt

Abstract

Quick population increase and the desire for urbanization are the main drivers for accelerating urban expansion on agricultural lands in Egypt. This issue is obvious in governorates with no desert backyards. This study aims to (1) explore the trend of Land Use Land Cover Change (LULCC) through the period of 1991–2018; (2) upgrade the reliability of predicting LULCC by integrating the Cellular Automata (CA)-Markov chain and fuzzy analytical hierarchy process (FAHP); and (3) perform analysis of urbanization risk on LST trends over the Gharbia governorate for the decision makers to implement effective strategies for sustainable land use. Multi-temporal Landsat images were used to monitor LULCC dynamics from 1991 to 2018 and then simulate LULCC in 2033 and 2048. Two comparable models were adopted for the simulation of spatiotemporal dynamics of land use in the study area: CA-Markov chain and FAHP-CA-Markov chain hybrid models. The second model upgrades the potential of the CA-Markov chain for prediction by its integration with FAHP, which can determine the locations of high potential to be urbanized. The outcomes stated a significant LULCC in Gharbia during the study period—specifically, urban sprawl on agricultural land, and this trend is predicted to carry on. The agricultural sector represented 91.2% in 1991 and reduced to 83.7% in 2018. The built-up area is almost doubled by 2048 with respect to 2018. The regression analysis revealed the LST increase due to urbanization, causing an urban heat island phenomenon. Criteria-based analysis reveals the district’s vulnerability to rapid urbanization, which is efficient for data-gap zones. The simulation results make sense since the FAHP-CA-Markov simulated the LULCC in a thoughtful way, considering the driving forces of LULCC, while the CA-Markov chain results were relatively random. Therefore, the FAHP-CA-Markov chain is the pioneer to be relied upon for future projection. The findings of this work provide a better understanding of LULCC trends over the years supporting decision makers toward sustainable land use. Thus, further urbanization should be planned to avert the loss of agricultural land and uninterrupted increasing temperatures.

Funder

Ministry of Science and Technology of the People’s Republic of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3