Study on the Micro-Abrasion Wear Behavior of PVD Hard Coating under Different SiC Abrasive Particles/Distilled Water Ratios

Author:

Baptista Andresa12ORCID,Pinto Gustavo F.12ORCID,Sousa Vitor F. C.12,Silva Francisco J. G.12ORCID,Fernandes Filipe13ORCID

Affiliation:

1. ISEP—School of Engineering, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal

2. INEGI—Instituto de Ciência e Inovação em Engenharia Mecânica e Engenharia Industrial, Rua Dr. Roberto Frias 400, 4200-465 Porto, Portugal

3. CEMMPRE—Center for Mechanical Engineering Materials, Processes Department of Mechanical Engineering, University of Coimbra, Rua Luís Reis Santos, 3030-788 Coimbra, Portugal

Abstract

Microscale abrasion has been intensively used to study the wear behavior o several hard coatings, enabling the observation of different wear mechanisms. Recently, a study arguing whether the surface texture of the ball could influence the dynamics of abrasive particles throughout the contact was presented. In this work, the influence of the abrasive particles concentration able to change the texture of the ball was studied to understand its influence on the wear modes—rolling or grooving. Thus, tests were carried out using samples with a thin coating of TiN, deposited using the Physical Vapor Deposition (PVD) technique, and AISI 52100 steel balls etched over 60 s to induce a change in their texture and roughness were used. Three abrasive slurries were prepared with black silicon carbide (SiC) particles (average particle size of 4 μm) with different concentrations, 0.25, 0.35, and 0.45 g/cm3. The rotation speed used in the tests was 80 rpm and the normal loads applied in the study were 0.2 N and 0.5 N, and 1 N. After the wear tests, the coated samples and tracks on the surface of the balls were observed by SEM and 3D microscopy to understand the abrasive particle dynamics, evaluating the wear mode transition as well as the function of both applied load and slurry concentration. The tracks in the balls showed particles embedded on their surface. A lower concentration of abrasion was conducted to higher specific wear rate. Moreover, a predominant two-body wear mechanism was induced when the abrasive concentration was increased. There was an increase in the roughness of the scar and the surface of the balls with an increase in the abrasive particles’ concentration.

Funder

MCTool21

CEMMPRE

Programa Operacional Factores de Competitividade

FCT—Fundação para a Ciência e a Tecnologia

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3