A Fast Thermal 1D Model to Study Aerospace Material Response Behaviors in Uncontrolled Atmospheric Entries

Author:

Pirrone Serena R. M.,Agabiti Camilla,Pagan Adam S.,Herdrich GeorgORCID

Abstract

A preliminary thermal 1D numerical model for studying the demise behavior of stainless steel 316L, silicon carbide (SiC) and carbon fiber reinforced polymer (CFRP) during uncontrolled atmospheric entry is proposed. Test case modeling results are compared to experimental data obtained in the framework of ESA Clean Space initiative: material samples were exposed to different heat flux conditions using the Plasma Wind Tunnel (PWT) facilities at the Institute of Space Systems (IRS) of the University of Stuttgart. This numerical model approximates the heating history of the selected materials by simulating their thermal response and temperature profiles, which have trends similar to the experimental curves that are found. Moreover, when high heat flux conditions are considered, the model simulates the materials’ mass loss due to the ablation process: at the end of the simulation, the difference between the experimental and the modeled results is about 17% for CFRP and 35% for stainless steel. To reduce the model’s uncertainties, the following analysis suggests the need to consider the influence of adequate material thermophysical properties and the physical-chemical processes that affect the samples’ temperature profile and mass loss.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3