Knockout of Purinergic P2Y6 Receptor Fails to Improve Liver Injury and Inflammation in Non-Alcoholic Steatohepatitis

Author:

Nishiyama Kazuhiro1ORCID,Ariyoshi Kohei1,Nishimura Akiyuki23ORCID,Kato Yuri1ORCID,Mi Xinya1,Kurose Hitoshi1,Kim Sang Geon4,Nishida Motohiro123ORCID

Affiliation:

1. Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan

2. National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Okazaki 444-8787, Japan

3. Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki 444-8787, Japan

4. College of Pharmacy, Dongguk University-Seoul, Goyang-si 10326, Gyeonggi-Do, Republic of Korea

Abstract

Nonalcoholic steatohepatitis (NASH) is a disease that progresses from nonalcoholic fatty liver (NAFL) and which is characterized by inflammation and fibrosis. The purinergic P2Y6 receptor (P2Y6R) is a pro-inflammatory Gq/G12 family protein-coupled receptor and reportedly contributes to intestinal inflammation and cardiovascular fibrosis, but its role in liver pathogenesis is unknown. Human genomics data analysis revealed that the liver P2Y6R mRNA expression level is increased during the progression from NAFL to NASH, which positively correlates with inductions of C-C motif chemokine 2 (CCL2) and collagen type I α1 chain (Col1a1) mRNAs. Therefore, we examined the impact of P2Y6R functional deficiency in mice crossed with a NASH model using a choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD). Feeding CDAHFD for 6 weeks markedly increased P2Y6R expression level in mouse liver, which was positively correlated with CCL2 mRNA induction. Unexpectedly, the CDAHFD treatment for 6 weeks increased liver weights with severe steatosis in both wild-type (WT) and P2Y6R knockout (KO) mice, while the disease marker levels such as serum AST and liver CCL2 mRNA in CDAHFD-treated P2Y6R KO mice were rather aggravated compared with those of CDAHFD-treated WT mice. Thus, P2Y6R may not contribute to the progression of liver injury, despite increased expression in NASH liver.

Funder

JST CREST

JSPS KAKENHI

National Research Foundation of Korea (NRF) funded by the Korean government

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The role of P2Y6 receptor in the pathogenesis of cardiovascular and inflammatory diseases;Journal of Pharmacological Sciences;2024-02

2. Purinergic Signalling in Physiology and Pathophysiology;International Journal of Molecular Sciences;2023-05-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3