Label-Free Separation of Circulating Tumor Cells and Clusters by Alternating Frequency Acoustic Field in a Microfluidic Chip

Author:

Zhang Yan1,Zhang Ziang1,Zheng Dongbang1,Huang Tuchen1ORCID,Fu Qibin1ORCID,Liu Yang1ORCID

Affiliation:

1. Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China

Abstract

Circulating tumor cells (CTCs) play an important role in the prognosis and efficacy evaluation of metastatic tumors. Since CTCs are present in very low concentrations in the blood and the phenotype is dynamically changing, it is a great challenge to achieve efficient separation while maintaining their viability. In this work, we designed an acoustofluidic microdevice for CTCs separation based on the differences in cell physical properties of size and compressibility. Efficient separation can be achieved with only one piece of piezoceramic working on alternating frequency mode. The separation principle was simulated by numerical calculation. Cancer cells from different tumor types were separated from peripheral blood mononuclear cells (PBMCs), with capture efficiency higher than 94% and a contamination rate of about 1% was obtained. Furthermore, this method was validated to have no negative effect on the viability of the separated cells. Finally, blood samples from patients with different cancer types and stages were tested, with measured concentrations of 36–166 CTCs per milliliter. Effective separation was achieved even when the size of CTCs is similar to that of PBMCs, which has the prospect of clinical application in cancer diagnosis and efficacy evaluation.

Funder

National Natural Science Foundation of China

National Key R&D Program of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3