New Insights into the Biological Response Triggered by Dextran-Coated Maghemite Nanoparticles in Pancreatic Cancer Cells and Their Potential for Theranostic Applications

Author:

Balas Mihaela1ORCID,Predoi Daniela2,Burtea Carmen3ORCID,Dinischiotu Anca1

Affiliation:

1. Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania

2. National Institute of Materials Physics, 076900 Magurele, Romania

3. Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, Avenue Maistriau 19, Mendeleïev Building, B-7000 Mons, Belgium

Abstract

Iron oxide nanoparticles are one of the most promising tools for theranostic applications of pancreatic cancer due to their unique physicochemical and magnetic properties making them suitable for both diagnosis and therapy. Thus, our study aimed to characterize the properties of dextran-coated iron oxide nanoparticles (DIO-NPs) of maghemite (γ-Fe2O3) type synthesized by co-precipitation and to investigate their effects (low-dose versus high-dose) on pancreatic cancer cells focusing on NP cellular uptake, MR contrast, and toxicological profile. This paper also addressed the modulation of heat shock proteins (HSPs) and p53 protein expression as well as the potential of DIO-NPs for theranostic purposes. DIO-NPs were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), dynamic light scattering analyses (DLS), and zeta potential. Pancreatic cancer cells (PANC-1 cell line) were exposed to different doses of dextran-coated ɣ-Fe2O3 NPs (14, 28, 42, 56 μg/mL) for up to 72 h. The results revealed that DIO-NPs with a hydrodynamic diameter of 16.3 nm produce a significant negative contrast using a 7 T MRI scanner correlated with dose-dependent cellular iron uptake and toxicity levels. We showed that DIO-NPs are biocompatible up to a concentration of 28 μg/mL (low-dose), while exposure to a concentration of 56 μg/mL (high-dose) caused a reduction in PANC-1 cell viability to 50% after 72 h by inducing reactive oxygen species (ROS) production, reduced glutathione (GSH) depletion, lipid peroxidation, enhancement of caspase-1 activity, and LDH release. An alteration in Hsp70 and Hsp90 protein expression was also observed. At low doses, these findings provide evidence that DIO-NPs could act as safe platforms in drug delivery, as well as antitumoral and imaging agents for theranostic uses in pancreatic cancer.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference70 articles.

1. Karamitopoulou, E. (2022). Molecular Pathology of Pancreatic Cancer. Cancers, 14.

2. Which is the Best Imaging Method in Pancreatic Adenocarcinoma Diagnostic and Staging-CT, MRI and EUS?;Costache;Curr. Health Sci. J.,2017

3. Selecting chemotherapy for pancreatic cancer: Far away or so close?;Shi;Semin. Oncol.,2019

4. Evolution of the management of resectable pancreatic cancer;Tsai;J. Oncol. Pract.,2016

5. Pancreatic cancer: From state-of-the-art treatments to promising novel therapies;Hidalgo;Nat. Rev. Clin. Oncol.,2015

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3