Cholesterol-Lowering Activity of Vitisin A Is Mediated by Inhibiting Cholesterol Biosynthesis and Enhancing LDL Uptake in HepG2 Cells

Author:

Yuan Yangbing1,Zhu Yuanqin1,Li Yawen1,Li Xusheng1,Jiao Rui1,Bai Weibin1

Affiliation:

1. Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China

Abstract

Pyranoanthocyanins have been reported to possess better chemical stability and bioactivities than monomeric anthocyanins in some aspects. The hypocholesterolemic activity of pyranoanthocyanins is unclear. In view of this, this study was conducted to compare the cholesterol-lowering activities of Vitisin A with the anthocyanin counterpart Cyanidin-3-O-glucoside(C3G) in HepG2 cells and to investigate the interaction of Vitisin A with the expression of genes and proteins associated with cholesterol metabolism. HepG2 cells were incubated with 40 μM cholesterol and 4 μM 25-hydroxycholeterol with various concentrations of Vitisin A or C3G for 24 h. It was found that Vitisin A decreased the cholesterol levels at the concentrations of 100 μM and 200 μM with a dose–response relationship, while C3G exhibited no significant effect on cellular cholesterol. Furthermore, Vitisin A could down-regulate 3-hydroxy-3-methyl-glutaryl coenzyme A reductase (HMGCR) to inhibit cholesterol biosynthesis through a sterol regulatory element-binding protein 2 (SREBP2)-dependent mechanism, and up-regulate low-density lipoprotein receptor (LDLR) and blunt the secretion of proprotein convertase subtilisin/kexin type 9 (PCSK9) protein to promote intracellular LDL uptake without LDLR degradation. In conclusion, Vitisin A demonstrated hypocholesterolemic activity, by inhibiting cholesterol biosynthesis and enhancing LDL uptake in HepG2 cells.

Funder

Department of Science and Technology of Guangdong Province

National Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference54 articles.

1. The Global Burden of Cardiovascular Diseases and Risks: A Compass for Global Action;Roth;J. Am. Coll. Cardiol.,2020

2. Associations of Dietary Cholesterol or Egg Consumption With Incident Cardiovascular Disease and Mortality;Zhong;JAMA,2019

3. The Mediterranean diet, plasma metabolome, and cardiovascular disease risk;Li;Eur. Heart J.,2020

4. Mediterranean-style diet for the primary and secondary prevention of cardiovascular disease;Rees;Cochrane Database Syst. Rev.,2019

5. The French paradox three decades later: Role of inflammation and thrombosis;Fragopoulou;Clinica Chimica Acta,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3