Potency of Hexaconazole to Disrupt Endocrine Function with Sex Hormone-Binding Globulin

Author:

Alquraini Ali1

Affiliation:

1. Department of Pharmaceutical Chemistry, Faculty of Clinical Pharmacy, Al Baha University, Al Baha 65779, Saudi Arabia

Abstract

Hexaconazole is widely used as a fungicide for agricultural purposes. However, the endocrine-disrupting potential of hexaconazole is still under investigation. In addition, an experimental study found that hexaconazole may disrupt the normal synthesis of steroidal hormones. The potency of hexaconazole to bind with sex hormone-binding globulin (SHBG), a plasma carrier protein that binds androgens and oestrogens, is unknown. In this study, we evaluated the efficacy of hexaconazole to bind with SHBG by molecular interaction, a molecular dynamics method. In addition, principal component analysis was performed to understand the dynamical behaviour of hexaconazole with SHBG in comparison with dihydrotestosterone and aminoglutethimide. The binding scores of hexaconazole, dihydrotestosterone, and aminoglutethimide with SHBG were found to be −7.12 kcal/mol, −11.41 kcal/mol, and −6.84 kcal/mol, respectively. With respect to stable molecular interaction, hexaconazole showed similar molecular dynamics patterns of root mean square deviation (RMSD), root mean square fluctuation (RMSF), radius of gyration (Rg), and hydrogen bonding. The solvent surface area (SASA) and principal component analysis (PCA) of hexaconazole exhibit similar patterns in comparison with dihydrotestosterone and aminoglutethimide. These results show that hexaconazole has a stable molecular interaction with SHBG, which may acquire the active site of the native ligand, resulting in significant endocrine disruption during agricultural work.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference22 articles.

1. PubChem [Internet] (2022, December 11). Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information, Available online: https://pubchem.ncbi.nlm.nih.gov/.

2. Screening for Estrogen and Androgen Receptor Activities in 200 Pesticides by in Vitro Reporter Gene Assays Using Chinese Hamster Ovary Cells;Kojima;Environ. Health Perspect.,2004

3. Thyroid Endocrine Disruption in Zebrafish Larvae Following Exposure to Hexaconazole and Tebuconazole;Yu;Aquat. Toxicol.,2013

4. Effects of Triazole Fungicides on Androgenic Disruption and CYP3A4 Enzyme Activity;Lv;Environ. Pollut.,2017

5. Hexaconazole Exposure Ravages Biosynthesis Pathway of Steroid Hormones: Revealed by Molecular Dynamics and Interaction;Abdi;Toxicol. Res.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3