Ephedra foeminea as a Novel Source of Antimicrobial and Anti-Biofilm Compounds to Fight Multidrug Resistance Phenotype

Author:

Ismail Shurooq12ORCID,Gaglione Rosa13ORCID,Masi Marco1ORCID,Padhi Srichandan4,Rai Amit K.4ORCID,Omar Ghadeer2ORCID,Cimmino Alessio1ORCID,Arciello Angela13ORCID

Affiliation:

1. Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Naples, Italy

2. Department of Biology and Biotechnology, An-Najah National University, Nablus 97300, Palestine

3. Istituto Nazionale di Biostrutture e Biosistemi (INBB), 00136 Rome, Italy

4. Institute of Bioresources and Sustainable Development, Imphal, Manipur 795004, India

Abstract

Plants are considered a wealthy resource of novel natural drugs effective in the treatment of multidrug-resistant infections. Here, a bioguided purification of Ephedra foeminea extracts was performed to identify bioactive compounds. The determination of antimicrobial properties was achieved by broth microdilution assays to evaluate minimal inhibitory concentration (MIC) values and by crystal violet staining and confocal laser scanning microscopy analyses (CLSM) to investigate the antibiofilm capacity of the isolated compounds. Assays were performed on a panel of three gram-positive and three gram-negative bacterial strains. Six compounds were isolated from E. foeminea extracts for the first time. They were identified by nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS) analyses as the well-known monoterpenoid phenols carvacrol and thymol and as four acylated kaempferol glycosides. Among them, the compound kaempferol-3-O-α-L-(2″,4″-di-E-p-coumaroyl)-rhamnopyranoside was found to be endowed with strong antibacterial properties and significant antibiofilm activity against S. aureus bacterial strains. Moreover, molecular docking studies on this compound suggested that the antibacterial activity of the tested ligand against S. aureus strains might be correlated to the inhibition of Sortase A and/or of tyrosyl tRNA synthase. Collectively, the results achieved open interesting perspectives to kaempferol-3-O-α-L-(2″,4″-di-E-p-coumaroyl)-rhamnopyranoside applicability in different fields, such as biomedical applications and biotechnological purposes such as food preservation and active packaging.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3