Inhibition of Melanogenesis by Essential Oils from the Citrus Cultivars Peels

Author:

Yang Jiyoon12ORCID,Lee Su-Yeon1,Jang Soo-Kyeong1,Kim Ki-Joong2,Park Mi-Jin1

Affiliation:

1. Forest Industrial Materials Division, Forest Products and Industry Department, National Institute of Forest Science, Seoul 02455, Republic of Korea

2. Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea

Abstract

Citrus is one of the most popular and widely grown fruit crops in the world. However, the bioactivity of only certain species of citrus cultivars is studied. In this study, the effects of essential oils from 21 citrus cultivars on melanogenesis were investigated in an effort to identify active anti-melanogenesis constituents. The essential oils from the peels of 21 citrus cultivars obtained by hydro-distillation were analyzed using gas chromatography–mass spectrometry. Mouse melanoma B16BL6 cells were used in all assays conducted in this study. The tyrosinase activity and melanin content were determined using the lysate of α-Melanocyte-stimulated B16BL6 cells. In addition, the melanogenic gene expression was determined by quantitative reverse transcription-polymerase chain reaction. Overall, the essential oils of (Citrus unshiu X Citrus sinensis) X Citrus reticulata, Citrus reticulata, and ((Citrus unshiu X Citrus sinensis) X Citrus reticulata) X Citrus reticulata provided the best bioactivity and comprised five distinct constituents compared to other essential oils such as limonene, farnesene, β-elemene, terpinen-4-ol, and sabinene. The anti-melanogenesis activities of the five individual compounds were evaluated. Among the five essential oils, β-elemene, farnesene, and limonene showed dominating properties. The experimental results indicated that (Citrus unshiu X Citrus sinensis) X Citrus reticulata, Citrus reticulata, and ((Citrus unshiu X Citrus sinensis) X Citrus reticulata) X Citrus reticulara are potential candidates with anti-melanogenesis activity for use as cosmetics and pharmaceutical agents against skin hyperpigmentation.

Funder

National Institute of Forest Science

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference53 articles.

1. Reunion overseas: Introduced wild boars and cultivated orange trees interact in the Brazilian Atlantic Forest;Peris;Rev. Biol. Trop.,2019

2. A phylogenetic analysis of 34 chloroplast genomes elucidates the relationships between wild and domestic species within the genus Citrus;Alonso;Mol. Biol. Evol.,2015

3. Citrus fruits as a treasure trove of active natural metabolites that potentially provide benefits for human health;Lv;Chem. Cent. J.,2015

4. Neuropharmacological potential of the genus Citrus: A review;Sohi;Res. Rev. J. Pharmacogn. Phytochem.,2018

5. The menstrual cycle and the skin;Raghunath;Clin. Exp. Dermatol.,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3