Plasma Deposition and UV Light Induced Surface Grafting Polymerization of NIPAAm on Stainless Steel for Enhancing Corrosion Resistance and Its Drug Delivery Property

Author:

Chen Ko-Shao,Chang Shu-Ju,Feng Chi-Kuang,Lin Win-Li,Liao Shu-Chuan

Abstract

When stainless steel is implanted in human bodies, the corrosion resistance and biocompatibility must be considered. In this study, first, a protective organic silicone film was coated on the surface of stainless steel by a plasma deposition technique with a precursor of hexamethyldisilazane (HMDSZ). Then, ultraviolet (UV) light-induced graft polymerization of N-isopropylacrylamide (NIPAAm) and acrylic acid (AAc) in different molar ratios were applied onto the organic silicone film in order to immobilize thermos-/pH-sensitive composite hydrogels on the surface. The thermo-/pH-sensitive composite hydrogels were tested at pH values of 4, 7.4 and 10 of a phosphate buffer saline (PBS) solution at a fixed temperature of 37 °C to observe the swelling ratio and drug delivery properties of caffeine which served as a drug delivery substance. According to the results of Fourier Transformation Infrared (FTIR) spectra and a potential polarization dynamic test, the silicone thin film formed by plasma deposition not only improved the adhesion ability between the substrate and hydrogels but also exhibited a high corrosion resistance. Furthermore, the composite hydrogels have an excellent release ratio of up to 90% of the absorbed amount after 8h at a pH of 10. In addition, the results of potential polarization dynamic tests showed that the corrosion resistance of stainless steel could be improved by the HMDSZ plasma deposition.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3