Real-Time Tool Localization for Laparoscopic Surgery Using Convolutional Neural Network

Author:

Benavides Diego1ORCID,Cisnal Ana1ORCID,Fontúrbel Carlos1ORCID,de la Fuente Eusebio1ORCID,Fraile Juan Carlos1

Affiliation:

1. Instituto de las Tecnologías Avanzadas de la Producción (ITAP), Escuela de Ingenierías Industriales, Universidad de Valladolid, Paseo Prado de la Magdalena 3-5, 47011 Valladolid, Spain

Abstract

Partially automated robotic systems, such as camera holders, represent a pivotal step towards enhancing efficiency and precision in surgical procedures. Therefore, this paper introduces an approach for real-time tool localization in laparoscopy surgery using convolutional neural networks. The proposed model, based on two Hourglass modules in series, can localize up to two surgical tools simultaneously. This study utilized three datasets: the ITAP dataset, alongside two publicly available datasets, namely Atlas Dione and EndoVis Challenge. Three variations of the Hourglass-based models were proposed, with the best model achieving high accuracy (92.86%) and frame rates (27.64 FPS), suitable for integration into robotic systems. An evaluation on an independent test set yielded slightly lower accuracy, indicating limited generalizability. The model was further analyzed using the Grad-CAM technique to gain insights into its functionality. Overall, this work presents a promising solution for automating aspects of laparoscopic surgery, potentially enhancing surgical efficiency by reducing the need for manual endoscope manipulation.

Funder

Spanish Ministry of Science, Innovation, and Universities

Publisher

MDPI AG

Reference34 articles.

1. A Computerized Analysis of Robotic versus Laparoscopic Task Performance;Narula;Surg. Endosc. Other Interv. Tech.,2007

2. Worth the Cost? A Closer Look at the Da Vinci Robot’s Impact on Prostate Cancer Surgery;Crew;Nature,2020

3. Towards the Robotic Co-Worker;Haddadin;Towards Safe Robots. Springer Tracts in Advanced Robotics,2011

4. Perioperative Management of Unicompartmental Knee Arthroplasty Using the MAKO Robotic Arm System (MAKOplasty);Pearle;Am. J. Orthop.,2009

5. Early Experiences with Robot-Assisted Total Knee Arthroplasty Using the DigiMatchTM ROBODOC® Surgical System;Liow;Singapore Med. J.,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3