Mineralogy of Zirconium in Iron-Oxides: A Micron- to Nanoscale Study of Hematite Ore from Peculiar Knob, South Australia

Author:

Keyser ,Ciobanu ,Cook ORCID,Feltus ,Johnson ,Slattery ,Wade ,Ehrig ORCID

Abstract

Zirconium is an element of considerable petrogenetic significance but is rarely found in hematite at concentrations higher than a few parts-per-million (ppm). Coarse-grained hematite ore from the metamorphosed Peculiar Knob iron deposit, South Australia, contains anomalous concentrations of Zr and has been investigated using microanalytical techniques that can bridge the micron- to nanoscales to understand the distribution of Zr in the ore. Hematite displays textures attributable to annealing under conditions of high-grade metamorphism, deformation twins (r~85˚ to hematite elongation), relict magnetite and fields of sub-micron-wide inclusions of baddeleyite as conjugate needles with orientation at ~110˚/70˚. Skeletal and granoblastic zircon, containing only a few ppm U, are both present interstitial to hematite. Using laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) spot analysis and mapping, the concentration of Zr in hematite is determined to be ~260 ppm on average (up to 680 ppm). The Zr content is, however, directly attributable to nm-scale inclusions of baddeleyite pervasively distributed throughout the hematite rather than Zr in solid solution. Distinction between nm-scale inclusions and lattice-bound trace element substitutions cannot be made from LA-ICP-MS data alone and requires nanoscale characterization. Scandium-rich (up to 0.18 wt. % Sc2O3) cores in zircon are documented by microprobe analysis and mapping. Using high-angle annular dark field scanning transmission electron microscopy imaging (HAADF-STEM) and energy-dispersive spectrometry STEM mapping of foils prepared in-situ by focused ion beam methods, we identify [011]baddeleyite epitaxially intergrown with [22.1]hematite. Lattice vectors at 84–86˚ underpinning the epitaxial intergrowth orientation correspond to directions of r-twins but not to the orientation of the needles, which display a ~15˚ misfit. This is attributable to directions of trellis exsolutions in a precursor titanomagnetite. U–Pb dating of zircon gives a 206Pb/238U weighted mean age of 1741 ± 49 Ma (sensitive high-resolution ion microprobe U–Pb method). Based on the findings presented here, detrital titanomagnetite from erosion of mafic rocks is considered the most likely source for Zr, Ti, Cr and Sc. Whether such detrital horizons accumulated in a basin with chemical precipitation of Fe-minerals (banded iron formation) is debatable, but such Fe-rich sediments clearly included detrital horizons. Martitization during the diagenesis-supergene enrichment cycle was followed by high-grade metamorphism during the ~1.73–1.69 Ga Kimban Orogeny during which martite recrystallized as granoblastic hematite. Later interaction with hydrothermal fluids associated with ~1.6 Ga Hiltaba-granitoids led to W, Sn and Sb enrichment in the hematite. By reconstructing the evolution of the massive orebody at Peculiar Knob, we show how application of complimentary advanced microanalytical techniques, in-situ and on the same material but at different scales, provides critical constraints on ore-forming processes.

Funder

BHP Billiton

South Australian Government Mining and Petroleum Services Centre of Excellence

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3