Managing and Utilizing Big Data in Atmospheric Monitoring Systems for Underground Coal Mines

Author:

Diaz Juan,Agioutantis ZachORCID,Hristopulos Dionissios T.ORCID,Schafrik StevenORCID

Abstract

Underground coal mining Atmospheric Monitoring Systems (AMS) have been implemented for real-time or near real-time monitoring and evaluation of the mine atmosphere and related parameters such as gas concentration (e.g., CH4, CO, O2), fan performance (e.g., power, speed), barometric pressure, ambient temperature, humidity, etc. Depending on the sampling frequency, AMS can collect and manage a tremendous amount of data, which mine operators typically consult for everyday operations as well as long-term planning and more effective management of ventilation systems. The raw data collected by AMS need considerable pre-processing and filtering before they can be used for analysis. This paper discusses different challenges related to filtering raw AMS data in order to identify and remove values due to sensor breakdowns, sensor calibration periods, transient values due to operational considerations, etc., as well as to homogenize time series for different variables. The statistical challenges involve the removal of faulty values and outliers (due to systematic problems) and transient effects, gap-filling (by means of interpolation methods), and homogenization (setting a common time reference and time step) of the respective time series. The objective is to derive representative and synchronous time series values that can subsequently be used to estimate summary statistics of AMS and to infer correlations or nonlinear dependence between different data streams. Identification and modeling of statistical dependencies can be further exploited to develop predictive equations based on time series models.

Publisher

MDPI AG

Subject

General Engineering

Reference17 articles.

1. Development of an Atmospheric Data Management System for Underground Coal Mines;Agioutantis;J. South. Afr. Inst. Min. Metall.,2014

2. Data Cleaning and Preprocessing. Analytics Vidhyahttps://medium.com/analytics-vidhya/data-cleaning-and-preprocessing

3. MARK-AGE data management: Cleaning, exploration and visualization of data

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Forecasting of methane gas in underground coal mines: univariate versus multivariate time series modeling;Stochastic Environmental Research and Risk Assessment;2023-01-27

2. Time Series Modeling of Methane Gas in Underground Mines;Mining, Metallurgy & Exploration;2022-08-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3