Double Coating as a Novel Technology for Controlling Urea Dissolution in Soil: A Step toward Improving the Sustainability of Nitrogen Fertilization Approaches

Author:

El-Ghamry Ayman,El-Naggar El-Sayed,Elgorban Abdallah M.ORCID,Gao BinORCID,Ahmad ZahoorORCID,Mosa AhmedORCID

Abstract

This research introduces a novel technology for reducing ordinary urea (OU) dissolution by developing double-coated urea (DCU) using phosphate rock (PR) as an outer layer to reduce its hydrolysis and sodium thiosulfate (STS) as an inner layer to inhibit the urease enzyme and nitrification process. Due to the double coating, the nitrogen content of DCU was lower than that of the OU (36.7% vs. 46.5%). The ultramorphological analysis using scanning electron microscopy (SEM) indicated that the controlled coating of urea, resulting from the outer layer of PR, was due to the adhesive effect of urea formaldehyde (UF), which was used as a glue. In addition, the transmission electron microscopy (TEM) analysis of the DCU revealed its high degree of agglomeration. The mechanical hardness of DCU was higher compared to that of OU (1.38 vs. 1.08 kgf). The seven-day dissolution rate test showed that OU reached 100% dissolution on the fifth day. The rate of DCU, however, was significantly lower (32% dissolution in the seventh day). Cumulative NO3− and NH4+ losses from a clay soil sample reached 68.3% and 7.6%, respectively, with OU measuring 40.5% compared to 4.9% for DCU 70 days after application. Field experiments showed a significant improvement in the marketable yield and agronomic nitrogen efficiency (ANE) of maize grains and zucchini fruits fertilized with DCU. Furthermore, the macro and micronutrient concentrations in maize grains and zucchini fruits showed an increase in the plants fertilized with DCU. In summary, double coating can be introduced as a novel technique to control urea dissolution in soil.

Funder

Mansoura University

El-Delta Fertilizers Plant, Egypt

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3