Multi-Indices Diagnosis of the Conditions That Led to the Two 2017 Major Wildfires in Portugal

Author:

Andrade Cristina12ORCID,Bugalho Lourdes3ORCID

Affiliation:

1. Natural Hazards Research Center (NHRC.ipt), Instituto Politécnico de Tomar, Quinta do Contador, Estrada da Serra, 2300-313 Tomar, Portugal

2. Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal

3. Instituto Português do Mar e da Atmosfera (IPMA), Rua C do Aeroporto, 1749-077 Lisboa, Portugal

Abstract

Forest fires, though part of a natural forest renewal process, when frequent and on a large -scale, have detrimental impacts on biodiversity, agroforestry systems, soil erosion, air, and water quality, infrastructures, and the economy. Portugal endures extreme forest fires, with a record extent of burned areas in 2017. These complexes of extreme wildfire events (CEWEs) concentrated in a few days but with highly burned areas are, among other factors, linked to severe fire weather conditions. In this study, a comparison between several fire danger indices (named ‘multi-indices diagnosis’) is performed for the control period 2001–2021, 2007 and 2017 (May–October) for the Fire Weather Index (FWI), Burning Index (BI), Forest Fire Danger Index (FFDI), Continuous Haines Index (CHI), and the Keetch–Byram Drought Index (KBDI). Daily analysis for the so-called Pedrógão Grande wildfire (17 June) and the October major fires (15 October) included the Spread Component (SC), Ignition Component (IC), Initial Spread Index (ISI), Buildup Index (BUI), and the Energy Release Component (ERC). Results revealed statistically significant high above-average values for most of the indices for 2017 in comparison with 2001–2021, particularly for October. The spatial distribution of BI, IC, ERC, and SC had the best performance in capturing the locations of the two CEWEs that were driven by atmospheric instability along with a dry environment aloft. These results were confirmed by the hotspot analysis that showed statistically significant intense spatial clustering between these indices and the burned areas. The spatial patterns for SC and ISI showed high values associated with high velocities in the spread of these fires. The outcomes allowed us to conclude that since fire danger depends on several factors, a multi-indices diagnosis can be highly relevant. The implementation of a Multi-index Prediction Methodology should be able to further enhance the ability to track and forecast unique CEWEs since the shortcomings of some indices are compensated by the information retrieved by others, as shown in this study. Overall, a new forecast method can help ensure the development of appropriate spatial preparedness plans, proactive responses by civil protection regarding firefighter management, and suppression efforts to minimize the detrimental impacts of wildfires in Portugal.

Funder

National Funds by FCT—the Portuguese Foundation for Science and Technology

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Safety Research,Environmental Science (miscellaneous),Safety, Risk, Reliability and Quality,Building and Construction,Forestry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3