Application of Dimming Compensation Technology Via Liquid Crystal Lens for Non-Imaging Projection Laser Systems

Author:

Fang Yi-ChinORCID,Tsai Cheng,Cheng Da-Long

Abstract

The main purpose of this paper is to explore a newly developed optical design, then to further improve the overhead lighting contrast in the laser projector module. In terms of the structural design of the projector, a liquid crystal lens array was used as the local dimming system for the light source, in order to achieve the objective, which was to significantly improve the contrast facility of the projection system. Second, in terms of the design of the light source, the output method for the light source was a laser light source employing arrays of micro-scanning. The main purpose was to compensate for the dim spots in the hole between the lenses in each unit of the liquid crystal when the liquid crystal lens array was locally dimmed, and thus significantly improving the contrast facility of the projection system. In terms of the software simulation, a liquid crystal lens array was used to simulate a pore size of 2.0 mm and focal lengths of 9 cm and 23 cm. The end effect gave good control and adjustment of the bright and dark areas during local dimming of the projector’s imaging chip components. For a single laser source, the maximum contrast for local dimming was about 128:1, 438:1, and 244:1, for the Red (R), Green (G), and Blue (B) optical paths, respectively. The light efficiency scores were approximately 20.91%, 20.05%, and 24.45%, for the R, G, and B optical paths, respectively. After compensation using a micro-scanning light source, the defect of having dim spots between the pores was remedied, and the light adjustment area became more uniform while the contrasts became smaller. The maximum contrasts were approximately 52:1, 122:1, and 110:1, for the R, G, and B optical paths, respectively. For the projector, when the liquid crystal lenses were not transmissive, the maximum uniformity scores were 82.25%, 87.15%, and 88.43%, for the R, G, and B optical paths, respectively.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3